

E-TECH ACADEMY (NEET & IIT-JEE)

1st Floor, New, White House, SG Barve Marg, near Anjuman Islam School, Buddha Colony, Kurla West, Kurla, Mumbai, Maharashtra 400070 Ph: 9833905914, http://www.etechacademy.com/

Sec: XIIntegrated-A Booster Test-01Date : 30-08-2023Time : 3:20 minsMax. Marks: 720

Exam Syllabus

Physics	: Basic Mathematics & Vectors, Kinematics 1D & 2D, Units and Measurement
Chemistry	: Mole Concept & Atomic Structure, BOC & Nomenclature
Botany	: Cell the unit of life, Cell Division & Mineral Nutrition
Zoology	: Living World, Animal Kingdom & Body Fluids and Circulation

Part-1 : Physics : Section-A (1-35)

- A car travels first 1/3 of the distance AB at 30 km/hr, next 1/3 of the distance at 40 km/hr, last 1/3 of the distance at 24 km/hr. Its average speed in km/hr for the whole journey is
 - 1) 40 2) 35
 - 3) 30 4) 28
- A particle travels A to M along a straight line with a velocity of 8 m/s and M to A with a velocity of 2 m/s, then the average velocity for the whole journey is –
 - 1) 3.2 m/s 2) -5 m/s 3) -3.2 m/s 4) 0 m/s
- 3. A thief is running away on a straight road in jeep moving with a speed of 9 ms⁻¹. A police man chases him on a motor cycle moving at a speed of 10 ms⁻¹. If the instantaneous separation of the jeep from the motorcycle is 100 m, how long will it take for the police to catch the thief

```
1) 1 s
2) 19 s
3) 90 s 4) 100 s
```

- 4. A particle moves along the x-axis in such a way that its coordinate (x) varies with time (t) according to the expression x = 2 5t + 6t² m. The time t is in second. The initial velocity of the particle is

 -5 m/s
 - 2) -3 m/s
 - 3) 6 m/s 4) 3 m/s
- 5. The velocity-time graph of a body travelling along a straight line is given below. The distance travelled and displacement of the body are respectively

1) 6m, 0 2) 6m, 3m 3) 6m, - 3m 4) 0, 0

6. A particle is rotating in a circle of radius r. The distance traversed by it in completing half circle would be

1) r 2) πr

4) none of these

- 30-08-2023_XI_INTEGRATED_A_BOOSTER_TEST-01_QP
- 7. A ball is released from a height h above the ground. It takes a time T to reach the ground. Where is the ball at the time T/2
 1) at a height h/4 from the ground
 2) at a height h/2 from the ground
 3) at a height 3h/4 from the ground
- 8. The density of a cube is measured by measuring its mass and length of its sides. If the maximum errors in the measurement of its mass and length are 4% and 3% respectively, the maximum error in density is
 - 1) 1% 2) 7% 3) 5% 4) 13%
- A rectangular plate has length (2 ±0.02) cm and width (1 ± 0.01) cm. The maximum percentage error in the measurement of its area is:

1) 1% 2) 2% 3) 3% 4) 5%

 To keep on object moving in a circle at constant speed requires a force F∝ m^av^br^c. According to dimensional analysis the a, b, c are:

1) a = 1,b = 2,c = -1 2) a = 1,b = 2,c = 13) a = 0,b = 2,c = -1 4) a = 1,b = 2,c = 0

11. If y represents distance and x-represents time,

dimensions of $\frac{d^2 y}{dx^2}$ are: 1) LT⁻¹ 2) L²T² 3) L²T⁻¹ 4) L²T⁻²

12. If $S = \frac{1}{3} ft^3$, 'f' has the dimensions of:

(S = distance, t = time)

- 1) $[M^0L^{-1}T^3]$ 2) $[M^1L^1T^{-3}]$
- 3) $[M^0 L^1 T^{-3}]$ 4) $[M^0 L^{-1} T^{-3}]$
- 13. The resultant of the two vectors having magnitude 2 and 3 is 1. What is the magnitude of their cross product

1) 6 2) 3 3) 1 4) 0

- 14. The angles which a vector $\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ makes with X, Y and Z axes respectively are 1) 60°, 60°, 60° 2) 45°, 45°, 45° 3) 60°, 60°, 45° 4) 45°, 45°, 60°
- 15. A particle moves towards east with velocity 5 m/s. After 10 seconds its direction changes towards north with same velocity. The average acceleration of the particle is

1) Zero 2)
$$\frac{1}{\sqrt{2}}m/s^2N-W$$

3)
$$\frac{1}{\sqrt{2}}m/s^2N-E$$
 4) $\frac{1}{\sqrt{2}}m/s^2S-W$

- 16. What vector must be added to the two vectors $\hat{i} 2\hat{j} + 2\hat{k}$ and $2\hat{i} + \hat{j} \hat{k}$, so that the resultant may be a unit vector along x-axis
 - 1) $2\hat{i} + \hat{j} \hat{k}$ 2) $-2\hat{i} + \hat{j} - \hat{k}$ 3) $2\hat{i} - \hat{j} + \hat{k}$ 4) $-2\hat{i} - \hat{j} - \hat{k}$
- 17. The unit vector along $\hat{i} + \hat{j}$ is

1)
$$\hat{k}$$
 2) $\hat{i} + \hat{j}$ 3) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ 4) $\frac{\hat{i} + \hat{j}}{2}$

18. A cricketer can throw a ball to a maximum horizontal distance of 100 m. With the same effort, he throws the ball vertically upwards. The maximum height attained by the ball is

1) 100 m 2) 80 m 3) 60 m 4) 50 m

19. A ball thrown by one player reaches the other in2 sec. The maximum height attained by the ball above the point of projection will be about

1) 10 m 2) 7.5 m 3) 5 m 4) 2.5 m

20. A projectile is fired at 30° with momentum p. Neglecting friction, the change in kinetic energy when it returns to the ground will be

1) Zero 2) 30% 3) 60% 4) 100%

- 21. The maximum horizontal range of a projectile is
 400 m. The maximum height attained by it will be
 1) 100 m 2) 200 m 3) 400m 4) 800m
- 22. Two projectiles A and B are thrown with the same speed such that A makes angle q with the horizontal and B makes angle q with the vertical, then
 - 1) Both must have same time of flight
 - 2) Both must achieve same maximum height
 - 3) A must have more horizontal range than B
 - 4) Both may have same time of flight
- 23. A particle is projected with a velocity v such that its range on the horizontal plane is twice the greatest height attained by it. The range of the projectile is (where g is acceleration due to gravity)

1)
$$\frac{4v^2}{5g}$$
 2) $\frac{4g}{5v^2}$ 3) $\frac{v^2}{g}$ 4) $\frac{4v^2}{\sqrt{5g}}$

- 24. Two projectiles A and B are projected with same speed at angles 30° and 60° to horizontal, then choose the wrong statement? (Symbols have their usual meaning)
 - 1) $R_A = R_B$ 2) $H_B = 3H_A$

 3) $\sqrt{3} T_B = T_A$ 4) All of these

25. As θ increases from 0° to 90°, the value of cos θ: 1) Increases

- 2) Decreases
- 3) Remains constant
- 4) First decreases then increases.

26. The slope of graph as shown in figure at points

1, 2 and 3 is m_1 , m_2 and m_3 respectively then

2) A dimensionally correct equation maybe incorrect

- 1) $m_1 > m_2 > m_3$ 2) $m_1 < m_2 < m_3$ 3) $m_1 = m_2 = m_3$ 4) $m_1 = m_3 > m_2$
- 27. What is the maximum number of rectangular components into which a vector can be split in its own plane?

3) 4

1) 2

4) Infinite

28. Magnitude of slope of the shown graph.

2) 3

- 1) First increases then decreases
- 2) First decreases then increases
- 3) Increases
- 4) Decreases
- 29. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is :

1)
$$\sqrt{2}$$
 2) $\sqrt{3}$ 3) $\frac{1}{\sqrt{2}}$ 4) $\sqrt{5}$

30. A unitless quantity

- 1) Does not exist
- 2) Always has a nonzero dimension
- 3) Never has a nonzero dimension
- 4) May have a nonzero dimension
- 31. An experiment measures quantities a, b and c, and X is calculated from $X = ab^2/c^3$. If the percentage error in a, b and c are $\pm 1\%$, $\pm 3\%$ and $\pm 2\%$ respectively, the percentage error in X will be –

1) $\pm 13\%$ 2) $\pm 7\%$ 3) $\pm 4\%$ 4) $\pm 1\%$

32. Which of the following is incorrect statement

1) A dimensionally correct equation may be correct

3) A dimensionally incorrect equation may be correct

4) A dimensionally incorrect equation is incorrect

33. Least count of main scale of screw gauge is 1 mm and there are 100 equal calibration on circular scale, circular scale move 1 part main scale on 1 rotation of circular scale, then what will be the diameter of ball as shown in diagram (i) and (ii)?

- 3) 6.50 mm 4) None
- 34. A vernier callipers has 20 divisions on the vernier scale which coincide with 19 divisions on the main scale. The least count of the instrument is 0.1 mm. The main scale divisions are of

1) 0.5 mm 2) 1mm 3)2 mm 4) 1/4 mm

- 35. A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale. The pitch of the screw gauge is:
 - 1) 0.25 mm 2) 0.5 mm
 - 3) 1.0 mm 4) 0.01 mm

Part-2 : Physics : Section-B (36-50)

Answer Any Ten Questions

36. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is:

1) 0.521 cm	2) 0.525 cm
3) 0.053 cm	4) 0.529 cm

- **37.** The vector $\vec{B} = 5\hat{i} + 2\hat{j} S\hat{k}$ is perpendicular to the vector $\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}$ if S =1) 1 2) 4.7 3) 6.3 4) 8.5
- **38.** If $\vec{P} \times \vec{Q} = \vec{R}$, then which of the following statements is not true?
 - 1) $\vec{R} \perp \vec{P}$ 2) $\vec{R} \perp \vec{Q}$ 3) $\vec{R} \perp \left(P + \vec{Q}\right)$ 4) $\vec{R} \perp \left(P \times \vec{Q}\right)$
- **39.** What is the component of $(3\hat{i} + 4\hat{j})$ along $(\hat{i} + \hat{j})$

1)
$$\frac{1}{2}(\hat{j}+\hat{i})$$

2) $\frac{3}{2}(\hat{j}+\hat{i})$
3) $\frac{5}{2}(\hat{j}+\hat{i})$
4) $\frac{7}{2}(\hat{j}+\hat{i})$

?

- **40.** If $|\vec{a}| = 11$, $|\vec{b}| = 23$, $|\vec{a} \vec{b}| = 30$, then $|\vec{a} + \vec{b}|$ is: 1) 10 2) 20 3) 30 4) 40
- 41. A man walks 30 m towards north, then 20 m towards east and in the last $30\sqrt{2}$ m towards south west. The displacement from origin is:
 - 1) 10 m towards west
 - 2) 10 m towards east
 - 3) $60\sqrt{2}$ m towards north west
 - 4) $60\sqrt{2}$ m towards east north
- 42. A man walks for some time T with velocity (v) due east. Then he walks for same time 't' with velocity (v) due north. The average velocity of the man is:

1) 2v 2)
$$\sqrt{2}v$$
 3) v 4) $\frac{v}{\sqrt{2}}$

- 43. The displacement of a particle is represented by the following equation: $s = 3t^3 + 7t^2 + 5t + 8$ where s is in metres and t in seconds. The acceleration of the particle at t = Is is :-
 - 1) 14 m/s^2 2) 18 m/s^2 3) 32 m/s^2 4) zero

44. Three particles P, Q and R are situated at point A on the circular path of radius 10 m. All three particles move along different paths and reach point B as shown in figure. Then the ratio of distance traversed by particles P and Q is :

1) $\frac{3}{4}$ 2) $\frac{1}{3}$ 3) $\frac{3\pi}{4}$ 4) $\frac{\pi}{3}$

45. In the graph shown in fig. time is plotted along xaxis. Which quantity associated with a projectile motion is plotted along the y - axis?

1) kinetic energy 2) momentum

3) horizontal velocity 4) none of the above

46. The speed of a projectile at its maximum height is

 $\frac{\sqrt{3}}{2}$ times of its initial speed u' of projection. Its

range on the horizontal plane is :

1) $\frac{\sqrt{3}u^2}{2g}$ 2) $\frac{u^2}{2g}$ 3) $\frac{3u^2}{2g}$ 4) $\frac{3u^2}{g}$

47. A body starts from rest and with a uniform acceleration of 10 ms⁻² for 5 seconds. During the next 10 seconds it moves with uniform velocity. The total distance travelled by the body is :1) 100 m 2) 125 m 2) 500 m 4) 625 m

1) 100 m 2) 125 m 3) 500 m 4) 625 m

48. Three particles A, B and C are projectile from the same point with the same initial speeds making angles 30°, 45° and 60° respectively with the horizontal. Which of the following statements are correct?

- 1) A, B and C have unequal ranges
- 2) Ranges of A and C are equal and less than that of B

3) Ranges of A and C are equal and greater than that of B

- 4) A, B and C have equal ranges
- 49. A particle is projected horizontally with a speed of
 - $\frac{20}{\sqrt{3}}$ m/s, from some height at t = 0. At what time

will its velocity make 60° angle with the initial velocity

1) 1 sec 2) 2 sec 3) 1.5 sec 4) 2.5 sec

50. Two stones are projected with the same speed but making different angles with the horizontal. Their ranges are equal. If the angle of projection

of one is $\frac{\pi}{3}$ and its maximum height is y₁ then the

maximum height of the other will be:

1)
$$3y_1$$
 2) $2y_1$ 3) $\frac{y_1}{2}$ 4) $\frac{y}{3}$

Part-1 : Chemistry : Section-A (51-85)

51. The number of mole of ammonia in 4.25 g of ammonia is :

1)	0.425	2) 0.25
3)	0.236	4) 0.2125

- 52. Number of atoms in 560 g of Fe (atomic mass 56 gmol⁻¹) is :
 - 1) Twice that in 70 g N
 - 2) Half that in 10 g of H
 - 3) Both (1) and (2)
 - 4) Twice of 240 g C

53. How many moles of electron weigh one	atoms, how many atoms are present in 2x g of
kilogram	B?
1) 6.023×10^{23} 2) $\frac{1}{9.108} \times 10^{31}$	1) $\frac{y}{2}$ 2) $\frac{y}{4}$ 3) y 4) 2y
3) $\frac{6.023}{0.108} \times 10^{54}$ 4) $\frac{1}{0.108 \times 6.022} \times 10^{8}$	62. A mixture of gases contains H_2 and O_2 gases in
$9.100 = 9.100 \times 0.023$ 54 A gas is found to have the formula (CO). It's	the ratio of $1:4$ (w/w). What is the molar ratio
$\mathbf{Y}_{\mathbf{Y}} = \mathbf{Y}_{\mathbf{Y}} $	of the two gases in the mixture ?
vD is 70 the value of x must be :	1) 4 : 1 2) 16 : 1 3) 2 : 1 4) 1 : 4
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	63. The number of moles of hydrogen molecules
55. A hydrocarbon contains 75% of carbon. Then its	required to produce 20 moles of ammonia
molecular formula is :	through Haber's process is :
$1)CH_4 = 2)C_2H_4 = 3)C_2H_6 = 4)C_2H_2$	1) 40 2) 10 3) 20 4) 30
56. Insulin constans 3.4% sulphur. The minimum	64. Which has the maximum number of molecules
mol. wt. of insulin is –	among the following?
1) 941.176 2) 944	$\mathbf{N}_{2(g)} + \mathbf{3H}_{2(g)} \rightarrow \mathbf{2NH}_{3(g)}$
3) 945.27 4) None	1) 44g CO ₂ 2) 48 g O ₃
57. For the reaction $2P + Q \rightarrow R$, 16 mol of P and	3) 8 g H ₂ 4) 64 g SO ₂
excess of Q will produce :	65 The number of primary hydrogen in the
	obt the number of primary nyurogen in the
1) 8 mol of R 2) 5 mol of R	following structure are respectively:
1) 8 mol of R 2) 5 mol of R 3) 4 mol of R 4) 13 mol of R	following structure are respectively:
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane,	following structure are respectively: CH_2-CH_3 CH_2-CHCH_3
 1) 8 mol of R 2) 5 mol of R 3) 4 mol of R 4) 13 mol of R 58. For the complete combustion of 4 litre ethane, how much oxygen is required? 	following structure are respectively: CH_2-CH_3 CH_2-CH_3 CH_2-CHCH_3 CH_3 CH_3
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane, how much oxygen is required?1) 14 litre2) 4 litre	following structure are respectively: $\begin{array}{c} $
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane, how much oxygen is required?1) 14 litre2) 4 litre3) 8 litre4) 12 litre	 following structure are respectively: CH₂-CH₃ CH₂-CH-CH₃ 1) 12 2) 9 3) 3 4) 14 66. Which of the following compound has sp, and
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane, how much oxygen is required?how much oxygen is required?1) 14 litre2) 4 litre3) 8 litre4) 12 litre59. The weight of CaCO3 obtained by heating 200	 following structure are respectively: CH₂-CH₃ CH₂-CH-CH₃ 1) 12 2) 9 3) 3 4) 14 66. Which of the following compound has sp, and sp³ hybrid carbon atoms ?
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane, how much oxygen is required?1) 14 litre2) 4 litre3) 8 litre4) 12 litre59. The weight of CaCO3 obtained by heating 200 kg of 95% pure lime stone is :	 following structure are respectively: CH₂-CH₃ CH₂-CH-CH₃ 1) 12 2) 9 3) 3 4) 14 66. Which of the following compound has sp, and sp³ hybrid carbon atoms ?
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane, how much oxygen is required?1) 14 litre2) 4 litre3) 8 litre4) 12 litre59. The weight of $CaCO_3$ obtained by heating 200 kg of 95% pure lime stone is :1) 98.4 kg2) 106.4 kg	following structure are respectively: $ \begin{array}{c} $
1) 8 mol of R 2) 5 mol of R 3) 4 mol of R 4) 13 mol of R 58. For the complete combustion of 4 litre ethane, how much oxygen is required? 1) 14 litre 2) 4 litre 3) 8 litre 4) 12 litre 59. The weight of $CaCO_3$ obtained by heating 200 kg of 95% pure lime stone is : 1) 98.4 kg 2) 106.4 kg 3) 112.8 kg 4) 122.6 kg	following structure are respectively: $ \begin{array}{c} $
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane, how much oxygen is required?1) 14 litre2) 4 litre3) 8 litre4) 12 litre59. The weight of CaCO3 obtained by heating 200 kg of 95% pure lime stone is :1) 98.4 kg2) 106.4 kg3) 112.8 kg4) 122.6 kg60. A solution of FeCl3 is $\frac{M}{30}$ its molarity for Cl	following structure are respectively: $ \begin{array}{c} $
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane, how much oxygen is required?1) 14 litre2) 4 litre3) 8 litre4) 12 litre59. The weight of CaCO3 obtained by heating 200 kg of 95% pure lime stone is :1) 98.4 kg2) 106.4 kg3) 112.8 kg4) 122.6 kg60. A solution of FeCl3 is $\frac{M}{30}$ its molarity for Cl-ion will be :	following structure are respectively: $ \begin{array}{c} $
1) 8 mol of R2) 5 mol of R3) 4 mol of R4) 13 mol of R3) 4 mol of R4) 13 mol of R58. For the complete combustion of 4 litre ethane, how much oxygen is required?1) 14 litre2) 4 litre3) 8 litre4) 12 litre59. The weight of CaCO3 obtained by heating 200 kg of 95% pure lime stone is :1) 98.4 kg2) 106.4 kg3) 112.8 kg4) 122.6 kg60. A solution of FeCl3 is $\frac{M}{30}$ its molarity for Cl ion will be :1) $\frac{M}{90}$ 2) $\frac{M}{30}$ 3) $\frac{M}{10}$ 4) $\frac{M}{5}$	following structure are respectively: $ \begin{array}{c} $
1) 8 mol of R 2) 5 mol of R 3) 4 mol of R 4) 13 mol of R 58. For the complete combustion of 4 litre ethane, how much oxygen is required? 1) 14 litre 2) 4 litre 3) 8 litre 4) 12 litre 59. The weight of CaCO ₃ obtained by heating 200 kg of 95% pure lime stone is : 1) 98.4 kg 2) 106.4 kg 3) 112.8 kg 4) 122.6 kg 60. A solution of FeCl ₃ is $\frac{M}{30}$ its molarity for Cl ⁻ ion will be : 1) $\frac{M}{90}$ 2) $\frac{M}{30}$ 3) $\frac{M}{10}$ 4) $\frac{M}{5}$ 61. The atomic weights of two elements A and B are	following structure are respectively: $ \begin{array}{c} $
1) 8 mol of R 2) 5 mol of R 3) 4 mol of R 4) 13 mol of R 58. For the complete combustion of 4 litre ethane, how much oxygen is required? 1) 14 litre 2) 4 litre 3) 8 litre 4) 12 litre 59. The weight of CaCO ₃ obtained by heating 200 kg of 95% pure lime stone is : 1) 98.4 kg 2) 106.4 kg 3) 112.8 kg 4) 122.6 kg 60. A solution of FeCl ₃ is $\frac{M}{30}$ its molarity for Cl ⁻ ion will be : 1) $\frac{M}{90}$ 2) $\frac{M}{30}$ 3) $\frac{M}{10}$ 4) $\frac{M}{5}$ 61. The atomic weights of two elements A and B are 40u and 80u respectively. If x g of A contains y	following structure are respectively: $ \begin{array}{c} $

30-08-2023_XI_INTEGRATED_A_BOOSTER_TEST-01_QP

- 84. The Vividh Bharati station of All India Radio, Delhi, broadcasts on a frequency of 1,368 kHz (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter and the part of the electromagnetic spectrum does it belong are-
 - 1) 319.3, Microwave
 - 2) 219.3, Radiowave
 - 3) 219.3, Ultraviolet Wave
 - 4) 249.3, Radiowave
- 85. A 100-watt bulb emits monochromatic light of wavelength 400 nm. The number of photons emitted per second by the bulb is-

1) $40.12 \times 10^{20} \text{ s}^{-1}$	2) 2.2.012 × 10 ²¹ s ⁻¹
3) $2.012 \times 10^{20} \mathrm{s}^{-1}$	4) $20.12 \times 10^{21} \mathrm{s}^{-1}$

Part-2 : Chemistry : Section-B (86-100)

Answer Any Ten Questions

86. The IUPAC name of glycerine is-

$$\begin{array}{c} CH_2-CH-CH_2\\ | & | \\ OH & OH & OH \end{array}$$

- 1) Glycerol
- 2) 1, 2-Ethanediol
- 3) Propane-1,2,3- triol
- 4) 1, 2, 3-Trihydroxypropane
- 87. The energy and the radius of the first orbit of He⁺ are respectively-
 - 1) -8.72 × 10⁻¹⁸J; 0.02645 nm
 - 2) 8.72 × 10⁻¹⁸ J; 0.02645 nm
 - 3) -7.82×10^{-18} J; 0.03655 nm
 - 4) 7.82 × 10⁻¹⁸ J; 0.03655 nm
- 88. Which of the following conclusions could not be derived from Rutherford's α-particle scattering experiment?

1) Most of the space in the atom is empty.

30-08-2023_XI_INTEGRATED_A_BOOSTER_TEST-01_QP

2) The radius of the atom is about 10^{-10} m while that of a nucleus is 10^{-15} m.

3) Electrons move in circular path of fixed energy called orbits

4) Electrons and the nucleus are held together by electrostatic forces of attraction.

89. Match the following:

Column I	Column-II
(a) $n = 2, l = 1$	i = 4s
(b) $n = 4, l = 0$	ii = 2p
(c) $n = 5, l = 3$	iii = 3d
(d) $n = 3, l = 2$	iv = 5f
1) a = iv; b = ii; c =	i; d = iii
2) a = ii; b = iii; c =	iv; d = i
3) $a = ii; b = i; c = ir$	v; d = iii
4) a = iii; b = ii; c =	i; d = iv

90. The probability density plots of 1s and 2s orbitals diagrams are given below

The density of dots in a region represents the probability density of finding electrons in the region.

On the basis of the above diagram which of the following statements is **incorrect?**

1) 1 s and 2s orbitals are spherical in shape

2) The probability of finding the electron is maximum near the nucleus

3) The probability of finding the electron at a given distance is equal in all directions

4) The probability density of electrons for 2s orbital decreases uniformly as the distance from the nucleus increases

- 91. Which of the following options does not represent ground state electronic configuration of an atom?
 - 1) $1s^22s^22p^63s^23p^63d^84s^2$
 - 2) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2$
 - 3) $1s^22s^2 2p^6 3s^2 3p^63d^{10} 4s^1$
 - 4) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹
- 92. Comprehension given below is followed by some multiple choice questions. Each question has one correct option.

Choose the correct option.

In the modern periodic table, elements are arranged in order of configuration. Depending upon the type of orbitals receiving the last electron, the elements in the periodic table have been divided into four block, viz s, p, d and f.

The modern periodic table consists of 7 periods and 18 groups. Each period begins with the filling of a new energy shell. In accordance with the Aufbau principle, the seven periods (1 to 7) have 2, 8, 8,18,18, 32 and 32 elements respectively.

The seventh period is still incomplete. To avoid the periodic table being too long, the two series of f-block elements, called lanthanoids and actinoids are placed at the bottom of the periodic table The element with atomic number 57 belongs to 1) s-block 2) p-block

3) d-block4) f-block

93. Maximum number of orbitals in an atom which can have the quantum numbers

n = 3, l = 2, m = + 2 are:

1) 1 2) 2 3) 3

- 4) 4
- 94. The orientation of an atomic orbital is governed by :

1) azimuthal quantum number

(1	
	2) spin quantum number					increasing energy, from the lowest to highest, as
	3) magnetic quantum number			r		1) (iv) < (ii) < (iii) < (i) 2) (ii) < (iv) < (v) < (iii)
	4) pri	ncipal qua	ntum numbe	r		3) (i) < (iii) < (ii) < (iv) 4) (iii) < (i) < (iv) < (ii)
9	5. Maxi	mum num	ber of electr	ons in a	a subshell of	PART-1 : Botany : Section-A (101-135)
	an ato	om in dete	rmined by th	e follov	ving:	101. Growing plant in nutrient solution in complete
	1) 4 <i>l</i>	+ 2 2) 2 <i>l</i>	+ 1			absence of soil was first demonstrated by
	3) 4 <i>l</i>	- 2	4) 2 n ²			1) Charles Darwin, 1858
9	6. Whic	h of the fo	ollowing is n	ot perm	issible set of	2) Julius von Sachs, 1860
	quant	um numbe	ers of electro	ns in an	atom?	3) Agnes Arber. 1938
	1) n =	=4, l=0, n	n = 0, s = -1	/2		4) Hugo von Mohl, 1850
	2) n =	= 5, l = 3, n	n = 0, s = +1	/2		102.In which of the following all three options are
	3) n =	= 3, <i>l</i> = 3, n	n = 0, s = -1	/2		macronutrients?
	4) n =	= 3, l = 2, n	n = -2, s = -	1/2		1) Iron, copper. Molybdenum
9	7. If n	= 6, the	correct sequ	uence fo	or filling of	2) Molybdenum, magnesium, manganese
	electr	ons will b	e :			3) Nitrogen, sulphur, phosphorus
	1) ns \rightarrow (n – 2)f \rightarrow (n – 1)d \rightarrow np					4) Boron, zinc, manganese
2) ns \rightarrow (n – 1)d \rightarrow (n – 2)f \rightarrow np			→ np		103. Choose the correct option for the match given	
	3) ns -	\rightarrow (n – 2)f	\rightarrow np \rightarrow (n –	- 1)d		below about the element which acts as activator
	4) ns -	$\rightarrow np(n-1)$	(n-2)	f		of certain enzymes.
9	8. Maxi	mum nun	ber of elec	trons ii	n a subshell	Activator element Enzyme
	havin	g n = 4 an	dl = 3 are :			1) Mg ²⁺ - RuBisCO, PEP Carboxylase
	1) 14	2) 16	3) 10	4) 12		2) Zn ²⁺ - Alcohol dehydrogenase
9	9. Whic	h of th	e following	comb	inations of	3) Mo - Nitrate reductase
	quant	um numb	ers is allowe	d ?		4) All of the above
	I	n	1	m	ms	104. The mineral element which helps in protein
	1)	3	2	1	0	synthesis opening and closing of stomata and
	1)	5	2	1	1	activation of enzymes is
	2)	2	0	0	$-\frac{1}{2}$	1) Ca^{2+} 2) K^+ 3) Mg^{2+} 4) Fe^{3+}
	3)	3	-3	-2	+-	105.Element present in middle lamella is
	,				2	1) Zn 2) Cu 3) Ca 4) K
	4)	1	0	1	$+\frac{1}{2}$	106. Which of the following elements cause necrosis
1	00.The e	lectrons, i	dentified by	quantu	n numbers n	due to their deficiency?
and l (i) $n = 4$, $l = 1$ (ii) $n = 4$, $l = 0$ (iii) $n = 3$, $l = 1$				- l, <i>l</i> = 0 (1	iii) n = 3, $l = $	1) N, K and S 2) N, K, Mg and Fe
	2 (iv) $n = 3$, $l = 1$ can be placed in order of				in order of	3) Mn, Zn and Mo 4) Ca, Mg, Cu and K
	· · ·	,		-		

30-08-2023_XI_INTEGRATED_A_BOOSTER_TEST-01_QP

107. Which of the follo	owing is a limiting nutrient for	1) If both A and R are true and R is the correct
both natural and a	agricultural ecosystems?	explanation of A
1) Carbon	2) Nitrogen	2) If both A and R are true, but R is not the correct
3) Sulphur	4) Hydrogen	explanation of A
108.Observe the steps	given below for nitrification	3) If A is true, but R is false
$2\mathbf{NH}_3 + 3\mathbf{O}_2 \rightarrow 2\mathbf{N}$	$NO_{2}^{-} + 2H^{+} + 2H_{2}O$	4) If A is false, but R is true
$2\mathrm{NO}_{2}^{-} + \mathrm{O2} \rightarrow 2\mathrm{I}$	NO ₃ -	113. Choose the correct option.
The steps given al	bove are carried out by	1) Amides arc the transported forms of nitrogen as
1) Nitrobacter	2) Nitrosomonas	they have more nitrogen
3) Nitrococcus	4) All of these	2) Legumes of tropical origin (e.g. soybean)
109. Which of the foll	owing bacteria reduces nitrate	transport ureides
in soil into nitrog	en?	3) The host produces globin part and bacterial
1) Nitrobacter	2) Nitrococcus	symbiont produces haem part of leghaemoglobin
3) Thiobacillus	4) Nitrosomonas	(N ₂ -fixing pigment)
110. The two most ab	undant amides found in plants	4) All of the above
are		114.Consider the following statements about
1) Asparagine and	glutamine	hydroponics and choose the correct pair of
2) Lysine and aspa	aragine	statements from the given options.
3) Glutamine and	lysine	I. Hydroponics technique is useful in areas having
4) None of the abo	ove	infertile and dry soils.
111.Assertion (A):	Magnesium is important in	II. Hydroponics can regulate pH, optimum for a
photosynthesis and	d carbohydrate metabolism.	particular crop.
Reason (R): Mg ²⁺	is involved in the synthesis of	III. It reduces the labour cost of growing crops.
nucleic acids.		IV. It increases the problem of weeding,
1) If both A and 2	R are true and R is the correct	1) I and IV 2) I and II
explanation of A		3) I and III 4) Only I
2) If both A and R	are true, but R is not the correct	115.Nodule formation involves a sequence of
explanation of A		multiple interactions between Rhizobium and
3) If A is true, but	R is false	roots of the host plant. The principal stages in
4) If A is false, but	R is true	the nodule formation are given below.
112.Assertion (A): Nit	trogen-fixing bacteria of legume	I. A mature nodule establishes a direct vascular
root nodules surv	vive in oxygen depleted cells.	connection with the host for exchange of
Reason (R):	Leghaemoglobin completely	nutrients.
removes oxygen fr	om nodule cells.	II. Root hair curls and the bacteria invade the root

hair.

Π

III. Rhizobia multiply and colonise the	119. Which one of the following does not differ in E.
surrounding of roots and get attached to	coli and Chlamydomonas?
epidermal and root hair cells.	1) Ribosomes 2) Chromosomal organisation
IV. The infection thread is produced earring the	3) Cell wall 4) Cell membrane
bacteria and grows into the cortex of the root.	120.If you remove the fimbriae from the bacterial
V. The bacteria get modified into rod-shaped	cell, which of the following would you expect to
bacteroids and cause inner cortical layer and	happen?
pericycle to div ide to form nodule.	1) The bacteria could no longer swim
The correct sequence is	2) The bacteria would not adhere to the host tissue
1) III \rightarrow II \rightarrow IV \rightarrow IV 2) III \rightarrow II \rightarrow IV \rightarrow V \rightarrow I	3) Transportation of molecules across the
3) $IV \rightarrow V \rightarrow III \rightarrow II \rightarrow I \rightarrow III \rightarrow V \rightarrow II \rightarrow IV$	membrane would stop
116.'Omnis cellula-e-cellula, (all cells arise from	4) The shape of bacteria would change
pre-existing cells). Who gave this concept and	121.Many ribosomes may associate with a single
modified the cell theory?	mRNA to form multiple copies of a polypeptide
1) Schleiden and Schwann	simultaneously. Such string of ribosomes are
2) Virchow	termed as
3) Robert Brown	1) plastidome
4) Leeuwenhoek	2) polyhedral bodies
117. Which of the following nucleic acids is present	3) polysome 4) nucleosome
in an organism having 70S ribosomes only?	122.Select the mismatch.
1) Single-stranded DNA with protein coat	1) Gas vacuoles — Green bacteria cells
2) Double-stranded circular naked DNA	2) Large central vacuoles — Animal cells
3) Double-stranded DNA enclosed in nuclear	3) Protists — Eukaryotes
membrane	4) Methanogens — Prokaryotes
4) Double-stranded circular DNA with histone	123. The main organelle involved in modification
proteins	and routing of newly synthesised proteins to
118.Glycocalyx differs in composition and thickness	their destination is
among different bacteria. It could be a loose	1) mitochondria 2) endoplasmic reticulum
sheath called theor it may be thick and	3) lysosome 4) chloroplast
tough, called the	124.Smooth endoplasmic reticulum acts as a major
1) capsule; slime layer	site for the synthesis of
2) slime layer; capsule	1) lipids and steroids
3) mesosome; slime layer	2) proteins
4) capsule, mesosome	3) ribosomes
	4) DNA

30-08-2023_XI_INTEGRATED_A_BOOSTER_TEST-01_QP

125. Choose the incorrect pair.	1
1) Golgi bodies - Densely stained reticular	
structure near the nucleus	
2) Cisternae - Circular, fixed in number	
3) Forming face -Convex cis	
4) Maturing face Concave trans	
126.Which of the following is correct regarding the	
origin of lysosome?	
1) Endoplasmic reticulum→ Golgi	
bodies→Lysosomes	1
2) Golgi bodies \rightarrow Endoplasmic reticulum \rightarrow	
Lysosomes	
3) Nucleus Golgi bodies \rightarrow Lysosomes	
4) Mitochondria \rightarrow Endoplasmic reticulum \rightarrow	
Golgi bodies \rightarrow Lysosomes	
127. The colourless plastids are	
1) chloroplasts 2) chromoplasts	
3) leucoplasts 4) lymphoplasts	
128. Who discovered ribosomes as dense particles	
under the electron microscope?	1
1) George Palade 2) Kolliker	1
3) Boveri 4) Strasburger	
129. Choose the incorrect pair.	
1) Cilium or Flagellum - 9 + 2 morphology	
2) Axonema - Core of cilium or flagellum	
3) Basal body - Centriole-like structure	
4) Radial spokes – Connect two microtubules	
130.Non-membranous nucleoplasmic structures in	1
nucleus are the site for active synthesis of	
1) protein synthesis 2) mRNA	
3) rRNA 4) rRNA	
131. Which one is only found in plant?	
1) Ribosome 2) Mitochondria	
3) Glyoxysomes 4) Lysosome	

32.Assertion (A) Chloroplast is a cell organelle.		
	Reason (R) An organelle is a distinct part of cell	
	which has a particular structure and function.	
	1) If both A and R an: true and R is the correct	
	explanation of A	
	2) If both A and R arc true, bin R is not the correct	
	explanation of A	
	3) If A is true, but R is false	
	4) If A is false, but R is true	
33.	Assertion (A) Mitochondria and chloroplast are	
	semiautonomous organelles.	
	Reason (R) These are formed by the division of	
	pre-existing organelles as well as they contain	
	DNA. but lack protein synthesising machinery.	
	1) If both A and R an: true and R is the correct	
	explanation of A	
	2) If both A and R arc true, bin R is not the correct	
	explanation of A	
	3) If A is true, but R is false	
	4) If A is false, but R is true	
34. Which of the following statements is incorrect		
	about lysosomes?	
	1) The hydrolytic enzymes of lysosomes are active	
	under acidic pH	
	2) Lysosomes are membrane bound structures	
	3) Lysosomes are formed by the process of	
	packaging in the endoplasmic reticulum	
	4) Lysosomes have numerous hydrolytic enzymes	
35.	Mesosomes are the infoldings of cell membrane,	
	which	
	I. help in cell wall formation. DNA replication	
	and respiration.	
	II. increase the surface area of plasma membrane.	

III. are present in both prokaryotic and eukaryotic cells. Which of the following option is most

appropriate?	141.During which phase of mitosis the
1) II and III are correct	chromosomes may appear in the V, L, J, or I-
2) I and II arc correct	shaped structures?
3) I and III are correct	1) Prophase 2) Metaphase
4) I, II and III are correct	3) Anaphase 4) Telophase
PART-2 : Botany : Section-B (136-150)	142. When karyokinesis is not followed by
Answer Any Ten Questions	cytokinesis, it results in the formation of
136. The cell cycle of mammalian cell and yeast,	1) uninucleate cells 2) multinucleate cells
respectively, takes about	3) undifferentiated cells 4) diploid cells
1) 24 hrs, 90 min 2) 60 min cach	143.Meiosis involves two cycles of
3) 30 min, 24 days 4) 90 min, 24 hrs	1) Cell division 2) Nuclear divisions
137. During cell growth, DNA synthesis takes place	3) DNA replication 4) Both (a) and (b)
in	144.Longest phase of meiosis is
1) S-phase 2) G_1 -phase	1) prophase-I 2) prophase-II
3) G ₂ -phase 4) M-phase	3) anaphase-I 4) metaphase-II
138. The centriole moves to opposite poles of the cell	145.Synaptonemal complex is formed
in which stage?	1) during anaphase
1) Prophase 2) Metaphase	2) during metaphase
3) Anaphase 4) Telophase	3) during prophase-II
139.Spindle fibres attach on to	4) during prophase-1 of meiosis
1) kinetochore of the chromosome	146. The enzyme involved in the process of crossing
2) centromere of the chromosome	over
3) kinetosome of the chromosome	1) crossinase 2) DNA ligase
4) telomere of the chromosome	3) recombinase 4) DNA polymerase
140. Anaphase Promoting Complex (APC) is a	147. The stage during which separation of the paired
protein degradation machinery necessary for	homologous chromosomes begins is
proper mitosis of animals cells. If APC is	1) diakinesis 2) diplotene
defective in a human cells, which of the	3) pachytene 4) zygotene
following is expected to occur?	148. The X-shaped structures observed during
1) Chromosomes will not condense	diplotene are
2) Chromosomes will be fragmented	1) chiasmata
3) Chromosomes will not segregate	2) synaptonemal complex
4) Recombination of chromosome arms will occur	3) bivalent complex
	4) None of these

30-08-2023_XI_INTEGRATED_A_BOOSTER_TEST-01_QP

		1011	DIN	00 00 1010			
14	9.Assertion (A) N	Aeiot	ic division	occurs in			
	reproductive cells.						
	Reason (R) Synapsis occurs during zygotene of						
	meiosis.						
	1) If both A and R are true and R is the correct						
	explanation of A						
	2) If both A and R	are tr	ue, but R is n	ot the			
	correct explanation of A						
	3) If A is true, but I	R is fa	alse				
	4) If A is false, but	R is t	rue				
15	0 Arrange the follo	owing	g events of	meiosis in			
	correct sequences.						
	I. Crossingover.						
	II. Synapsis.						
	III. Terminalisation	ı of c	hiasmata.				
	IV. Disappearance of nucleolus.						
	1) II, I, IV and III 2) II, I, III and IV						
	3) I, II, III and IV 4) II, III, IV and I						
Part-1 : Zoology : Section-A (151-185)							
151.In Amoeba, reproduction is synonymous with							
	1) digestion 2) growth						
	3) locomotion 4) none of these						
152.Match Column-I with Column-II and choose							
	the correct option	from	the codes give	ven below.			
	Column-I		Column-II	(Method			
	(Organism)		of repro	duction)			
а	Planaria	(1)	Fragme	ntation			
b	Hydra	(2)	Regene	eration			
с	Fungi	(3)	Binary	fission			
d	Amoeba	(4)	Bude	ding			
	a b	C	d				
1)	2 4	1	3				
2)	4 2	3	1				
3)	3 1	4	2				

4) 1 3 2 4
153.Match the Column-I with Column-II and choose the correct option from the codes given below.

		Column-I		Column-II
а	В	iodiversity	(1)	Correct descriptionof an organism
b	No	menclature	(2)	The variety of living organisms
С	Identification		(3)	A system of providing a name with two components
d	Binomial nomenclature		(4)	Naming of living organisms
	а	b	С	d
1)	2	4	1	3
2)	4	3	2	1
3)	1	2	4	3
4)	3	1	4	2

154.Match Column-I with Column-II and choose

the correct option from the codes given below.

		Column-I		Column-II
а		Mammalia	(1)	Specific epithet
b		Mangifera	(2)	Branch of study
С		indica	(3)	Таха
D	C.	Systematics	(4)	Generic name
	а	b	С	d
1)	3	4	1	2
2)	2	1	3	4
3)	1	2	4	3
4)	4	3	2	1
15	5.So	lanum includes s	speci	es
	1) nigrum			
	2) melongena			
	3)	tuberosum		
	4)	all of these		

30-08-2023_XI_INTEGRATED_A_BOOSTER_TEST-01_QP

156.Biological museums have collection of

1) preserved plant specimens

2) preserved animal specimens

3) live plants and animals

4) both A and B

- 157. Each statement of the key is called a
 - 1) couplet 2) lead
 - 3) monograph 4) none of these

158. Which of the following characteristics is correct for reptilia?

1) Body covered with dry and cornified skin, scales over the body are epidermal, they do not have external ears.

2) Body is covered with moist skin and is devoid of scales, the ear is represented by a tympanum, alimentary canal, urinary and reproductive tracts open into a common cloaca.

3) Fresh water animals with bony endoskeleton and air-bladder regulate buoyancy.

4) Marine animals with cartilaginous

endoskeleton and body is covered with placoid scales.

159. Match the types of animals given in column I with their examples given in column II and choose the correct option.

Column -I	Column –II
(Types of animals)	(Examples)
A. Limbless reptiles	I. Elephant
B. Jawless vertebrates	II. Lamprey
C. Flightless bird	III. Ichthyophis
D. Largest	IV Ostrich
terrestrial animal	
E. Limbless amphibia	V Cobra
1) A-II; B-V; C-IV; D-I; E-III	
2) A - V; B - II; C - IV; D -I; E	– III

3) A -V; B -II; C-I; D-IV; E-III

4) A -V; B-IV; C-II; D-I; E-III

(Phylum)

160.Match the phylum given in column - 1 with the special features present in them given in column

- II and choose the correct option.

Column -I Column- II

- (Special features present)
- A. Porifera I. Mammary glands
- B. Mollusca II. Cloaca
- C. Ctenophora III. Choanocytes
- D. Amphibia IV. Radula
- E. Mammalia V. Comb plates
- 1) A-III; B-IV; C-V; D-II; E-I
- 2) A -IV; B-III; C-V; D-II; E-I
- 3) A-III; B-IV; C-II; D-V; E-I
- 4) A-III; B-V; C-IV; D-II; E-I

161.In which one of the following, the genus name, its two characters and its class/phylum are correctly matched?

	Genus		Two characters	Class/	
	name		1 wo characters	phylum	
		(i)	Body segmented		
1)	Ascaris	(ii)	Males and	Annelida	
			females distinct	-	
		(i)	A tympanum		
2)	Salamandra		represents ear	Amphihia	
2)		(ii)	Fertilization is		
			internal	-	
		(i)	Skin possesses		
3)	Pteropus		hair	Mammalia	
		(ii)	Viviparous	-	
		(i)	Cnidoblasts		
4)	Aurelia	(ii)	Organ level of	Coelenterata	
			organization		

162.In some animal groups, the body is found		1) (i)-B, (ii)-C, (iii)-D and (iv)-A						
divided into compartments with at least some			2) (i)-B, (ii)-D, (iii)-C and (iv)-A					
organs. This characteristic feature is called			3) (i)-D, (ii)-A, (iii)-B and (iv)-C					
1) Segmentation 2) Metam	erism		4) (i)-A,	(ii)-D, (iii)-	C and (iv)-	В		
3) Metagenesis 4) Metam	orphosis	167	.Match tl	he column	I with colu	umn II a	nd choose	
163. Given below are types of cell	s present in some		the corre	ect option.				
animals. Which of the fol	lowing cells can		Column	IColumn I	Ι			
differentiate to perform different	ent functions?		A. Porife	era	1. Canal	system		
1) choanocytes 2) interstit	tial cells		B. Asche	elminthes	2. Water	vascular	system	
3) gastrodermal cells 4) nemat	tocytes		C. Anne	lida	3. Muscu	lar Phar	ynx	
164. Which one of the following	ng statements is		D. Arthr	ropoda	4. Jointee	1 append	ages	
incorrect?			E. Echin	odermata	5. Metan	neres		
1) Mesoglea is present in betw	een ectoderm and		Codes					
endoderm in Obelia			А	В	С	D	E	
2) Asterias exhibits radial symr	netry	1)	2	3	5	4	1	
3) Fasciola is a pseudocoeloma	te animal	2)	2	5	3	4	1	
4) Taenia is a triploblastic animal			1	3	5	4	2	
165. Which one of the following statements is			1	5	3	4	2	
incorrect?			3.Planaria	possesses	high capac	ity of:		
1) In cockroaches and prawns excretion of waste			1) Metar	norphosis				
material occurs through malpighian tubules.			2) Regen	eration				
2) In ctenophores, locomotion is mediated by			3) Altern	nation of ge	neration			
comb plates.			4) Bioluminescence					
3) In Fasciola flame cells take p	part in excretion	169. Select the Taxon mentioned that represents both					sents both	
4) Earthworms are hermaphro	dites and yet cross	marine and fresh water species:						
fertilisation take place among t	hem.		1) Echinoderms					
166.Match the following list of animals with their			2) Ctenophora					
level of organisation.			3) Cephalochordata					
Division of Labour Animal			4) Cnidaria					
(i) Organ level	A. Pheretima	170	.Cockroa	ches are br	own or bla	ick bodie	ed animals	
(ii) Cellular aggregate level	B. Fasciola		that are	included in	class_of p	hylum		
(iii) Tissue level	C. Spongilla		1) Reptil	ia; Annelid	а			
(iv) Organ system level	D. Obelia		2) Insect	a; Arthropo	oda			
Choose the correct match showing division of			3) Insecta; Annelida					
labour with animal example.			4) Reptil	ia; Arthrop	oda			

171.Body having meshwork of cel	l, internal cavities	175.An important characteristic that Hemichordates				
lined with food filtering flag	gellated cells and	share with Chordates is :				
indirect development are the	characteristics of	1) Ventral tubular nerve cord				
phylum.		2) Pharynx with gil	ll slits			
1) Porifera 2) Mollus	ca	3) Pharynx without gill slits				
3) Protozoa 4) Coelen	terate	4) Absence of notochord				
172. Metagenesis refers to:		176. The most abundant cell in human blood are				
1) Alteration of generation bet	ween asexual and	1) Neutrophils	2) Monocytes			
sexual phases of an organisms		3) Lymphocytes	4) None of these			
2) Occurrence of a drastic char	nge in form during	177.Basophil secrete				
post-embroyonic development		1) Histamine	2) Serotonin			
3) Presence of a segme	nted body and	3) Heparin	4) All of these			
parthenogenetic mode of repro	duction	178.Lymphocyte for	ms how much per cent of			
4) Presence of different morphi	c forms	WBCs?				
173. Which of the following char	acteristic features	1) 20 to 25	2) 2 to 3			
always holds true for the corre	sponding group of	1) 20 to 25	2) 2 10 5			
animals?		5) 0 10 8	4) 00 10 05			
1) Cartilaginous	Chondrichthyes	179.Platelets are				
endoskeleton		1) Cell fragments	of megakaryocyte			
2) Viviparous	Mammalia	2) 1.5 to 3.5 lac/n	nm ³ in blood			
3) Possess a mouth	Chordata with	3) Also called thro	ombocytes			
	an upper and a	4) All of these				
	lower jaw	180.ABO grouping	is based on how many			
4) 3 - chambered heart	Reptilia with	antigens present or absent on WBCs				
	One incomplete	1) 1				
	-ly divided	2) 2				
ventricle		3) 3	4) None of these			
174. Which of the following feature	es is not present in	181.Rh incompatibility in first pregnancy occurs				
the Phylum - Arthropoda?		when				
1) Chitinous exoskeleton		1) Fostus develop its beart completely				
2) Netameric segmentation		2) During the definition of first shift				
3) Parapodia		2) During the delivery of first child				
4) Jointea appendages		3) When foetal or	gans completely develop			
		4) Never occur in	the first pregnancy			

E-TECH ACADEMY MUMBAI 30-08-20	23_XI_INTEGRATED_A_BOOSTER_TEST-01_QP		
182.Bicuspid valve/mitral valve is found	188. Which of the following blood vessels		
between	possess semilunar valves?		
1) Left atrium and left ventricle	1) Vena cava and aorta		
2) Right atrium and right ventricle	2) Aorta and pulmonary artery		
3) Right atrium and left ventricle	3) Pulmonary artery and pulmonary vein		
4) Left atrium and right ventricle	4) Pulmonary vein and vena cava		
183. Which of the following has the thickest	189.P-wave represents		
wall?	1) Depolarization of ventricles		
1) Left auricle 2) Left ventricle	2) Repolarization of ventricle		
3) Right auricle 4) Right ventricle	3) Repolarization of atria		
184.Human heart is	4) Depolarization of atria		
1) Neurogenic 2) Myogenic	190.Select the total number of incorrect		
3) Cardiogenic 4) Digenic	matching from the following:		
185.Contraction of right ventricle pumps blood	A) ECG-Electro Cardio Gram		
into	B) AVN-Atrio Ventricular Node		
1) Dorsal aorta 2) Pulmonary vein	C) SAN-Sino Atrial Node		
3) Coronary artery 4) Pulmonary artery	D) WBC-White Blue Cells		
Part-2 : Zoology : Section-B (186-200)	E) RBC-Red Blood Cells		
Answer Any Ten Questions	1) A 2) B 3) C 4) D		
186.The amount of blood to be pumped out by	191. Which of the following pair of terms		
each ventricle/minute is	represent both one and the same thing?		
1) Stroke volume 2) Cardiac output	1) Plasma-Serum		
3) ERV 4) ZRV	2) Atrioventricular node-Pacemaker		
187. Identify the correct sequence of events in a	3) Leucocytes-Lymphocytes		
cardiac cycle:	4) Mitral valve-Bicuspid valve		
1) Diastole, atrial systole, ventricular diastole	192. How many times a red blood corpuscle will		
2) Atrial systole, ventricular diastole,	have to pass through the heart in its journey		
ventricular systole	from hepatic artery to the aorta?		
3) Atrial systole, ventricular systole, joint diastole	1) Two times		
4) Ventricular diastole, diastole, ventricular	2) Only once		
systole, atrial systole	3) Several times		
	4) Four times		

30-08-2023_XI_INTEGRATED_A_BOOSTER_TEST-01_QP

193.Maximum pressure of blood is experienced

- 1) When blood enters from left atrium to aorta
- 2) When blood enters from right atrium to aorta
- 3) When blood enters from left ventricle to aorta
- 4) When blood enters from right ventricle to aorta

194. The true statement about RBC is

1) RBCs have an average life span of 120 days.

2) RBCs are destroyed in the spleen (graveyard of RBCs).

3) RBCs are devoid of nucleus in most of the mammals.

4) All the above

195.An artery is

1) Thick walled in which blood flows under low pressure.

2) Thin walled in which blood flows under high pressure.

3) Thick walled in which blood flows under high pressure.

4) Thin walled in which blood flows under low pressure.

196.There is a vertical transmission of Rh antibody from mother to foetus because they

are ______ type of antibody

1) Ig M	2) IgG
3) Ig A	4) Ig D

197.Ventricles are thick-walled as compared to atrium because

1) It is to receive blood from atria

2) It is present on the posterior side

3) It has to pump blood

4) None of these

198.Cells constituting the wall of capillaries are

- 1) Parietal 2) Endothelial
- 3) Oxyntic 4) Haemocytes

199. The blood circulation, which starts and ends

into capillaries is

- 1) Portal circulation
- 2) Renal circulation
- 3) Hepatic circulation
- 4) Lymphatic circulation

200. Which one of the following is absent in the

human beings?

- 1) Hypophyseal-hypothalamic tract
- 2) Hepatic portal vein
- 3) Renal portal vein
- 4) None of these

SPACE FOR ROUGH WORK